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INVISCID THERORY OF WALL INTERFERENCE IN SLOTTED TEST SECTIONS*

Sunc B, Berndt®*#* :
The Aeronautical Research Institute of Sweden (FFA) :
§-161 11! PBromma 11, Sweden

Abstract

The classical thcory of longitudinally slot-
ted wvalls, which substitutes an approximate hamo-
geneous wall boundary condition for the true
mixed conditions, is extended in several respects,
‘Bascd on recent experimental findings at the FFA,
an inviscid flow model is adopted in which the
outgoing slot flow penetrates into the plenum
chamber as a thin jet, while the re-entering
flow, admitting quiescent air from the plenum
chamber into the test section, induces a longi~
tudinal separation bubble at plenum pressure
along the slot and adjacent parts of the test
section wall, The three-dimensional analysis,
based on the assumption that the slots are nartow,
retains quadratic cross-flow terms in the pres-
sure equation and allows the slots to be few in
mumber and have non-uniform distribution and ge-
ometry, A family of homogeneous boundary condi-
tions is obtained, each of successively higher
a“curacy. Application to the design of inter-
ference-frec transonic test sections is discuss-
ed. Unsteady effeccts are also considered.

1. Introduction

It is a remarkable fuct that theory plays a
very minor roll in the design and use of slotted
transonic test sections, in particular when one
considers that the theory was already well devel-
oped at an early stage'®, There might be severnl
reasons for this but one of them seems to be that
the flow models, mainly inviscid ones, had not
been tested by careful experiments, while incon-
sistencics were alleged to appear in trying to
apply the theoretical results to practical wind
tunnel. flows. Therefore, it seems, reliance was
placed on empirical methods, determining the
slot width so as to minimize choking effects
around Mach one and accepting as free-stream
conditions the upstrcam conditions in the empty
test section as calibrated against the plenum
pressure, It became a widespread belief that
viscous effects of an unknown and complicated
nature are present in the slot flow and that
therefore an empirical approach is all there is
available. In conscquence the development of
the theory came to a virtual standstill,

In a recent experimental investigation of
slot flows* it has been found that under typical
test conditions the slot flow is not necessarily
dominated by viscosity and that therefore one
can define an inviscid flow model which is rea-
sonably close to rcality. This modcl, which is

#  The research reported herecin was sponsored
Jointly by the FFA and the US Air Force Office
of Scientific Research (Grant No. AFOSR 72-218%),

## Consulfant; also Professor of Gasdynamics,
Royal Institute of Technology (KTH), S-100 44
Stockholm 70.

not as simple as some of the ecarly ones, will be
set down in the next section, For a fuller dis-
cussion of the problems involved see Ref. 4 and
references given therein,

Our present task is to base on this model a
general inviscid theory for the wall interfer-
ence caused by a slotted wall. In the classi-
cal theory of this kind®"® based on the slender-
body approximation, a description is obtained of
the combined effect of the mixed boundary condi-
tions at the slots and slats in the form of a
far simpler, homogcneous boundary condition, re-
lating the average pressurc difference across
the wall to the average streamline curvature
normal to the wall. The simplification is made
possible by postulating a large number of simi-
lar slots uniformly distributed over the inter-
fering wall.

In order to minimize any viscous cffects,
and possibly for other rcasons, it is desirable
to keep the number of slots small, Furthermore,
if the slots are few in number their proper lo-
cation might become important when minimizing
the wall interference. Consequently therc is a
great need for freeing the classical theory from
its inherent restrictions while keeping its sim-
plicity. We shall achieve this by employing a
modified method of approximation, based on the
much less restrictive assumption that the slot
width is sma® ompared to the distance betwecn
slots, From the case of uniform slot distribu-
tion this is known to be a workable approach®i9,
In the present more gencicl context it leads to
a straightforward application of the method of
matched asymptotic expansions,

In our analysis we shall aim at a fair level
of generality. This might for example facili-
tate later inclusion of corrcctions for viscous
effects. The main concerm will be with three-
dimensional tests, the case of two-dimensional
tests being already treated®. Also, we shall
not exclude the case of unsteady flow, which is
clearly quite important in connection with os-
cillatory testing'. However, in the prescnt
paper the applications of the theory will be re-
stricted to a few very simple cases.

The thcory turns out to produce not one but
a whole family of possible homogeneous bourdary
conditions, each corresponding to a specific
degree of resolution of the details of the wall
flow as 'filtered' through the averaging proce-~
dure, The choice for any particular applicatjon
will have to be based on considerations of ac-
curacy. There is also some frecedom in the me-
" thod of applying the boundary conditions, de-

pending on the kind of problem to Le solved., If

the slots are to be adjusted for zero interfer-
. ence by employing measured wall pressure distri-
butions, a somewhat diffecrent type of Loundary
condition will be required from if the adjuswwmt
is to be bascd on a pre-computed interfeor-nce-
free flow ficld.

Ve shall return to this point
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in later scctions as well as to the related

Possible inviscid flow patterns (not to scale).
= fast air from the slot,

In order to translate the slot flow model in-

questions of how to definc and compute wall inter- to a set of boundary conditions to be used with

ference corrections and how to use test section
calibrations,

2. An Inviscid Modcl for the Slot Flow

The slot flow model to be adopted is present-
ed in Fig. 1. In the upstream part of the test
section the flow is going outwards through the
slot into the plenum chamber, where it forms a
thin jet. The flow inside the slot is attached,
as indicated in cross scction (a), and separa-
tion occurs at the sharp slot edges on the plemum
side. Above the model the slot flow turns back,
leaving the jet to contimuc on its own into the
interior of the plenum chamber, This ‘'splitting'
of .the fast air into two scparate streams is
shown beginning at section (b). At (c) the fast
air in the slot, having entered farther upstream,
is returning to the test section. At (d) the
fast air has left the slot and behind it appears
a 'bubble' of quiescent air at plenum pressure,

. the boundary of which is expanding into the test
section flow., Typically, the bubble is narrow
and extends along the slot. Presumably it col-
lapses onto the slot farther downstream if the
cross flow tums back again towards the wall,
Vhat happens if it is struck by a shock wave from
the model is not known,

This is the picturc of the slot flow arrived
at in Ref, 4. The description leaves undecided
wvhether the high speed air returning from the
slot to the test section is a vorticity-carrying
slug, as in (c1) and (d1), or whether it expands
around the slot edges without separation, as in
(c2) and (d2). The experimental cvidence in Ref.
4, although not quite conclusive, points to the
formor alternative., It might well be that both
types of flow may occur, In order to avoid com-
plications at this stage we shall assume the
sccond type of flow, but when developing the
analysis we shall keep the altermative in mind
as well as the possible need for viscous correce
tions.

(Fig. 2).

the flow equations further simplifications must
be introduced. First of all there is no need to
consider in detail the development of the jet in-
side the plenum chamber. From the point of view
of the slot flow it should be sufficient to des-
ignate a surface Spc across the slot exit on
which the plenum pressure may be taken to act.

It must also be specified how the fast air in

the slot is split off to return to the test sec-
tion: making the obvious choice, we shall as-
sume that the downstream end of Sy, coincides
with the upstrecam end of the frce surface S,,
which is the boundary batween the fast air and
the quiescent plenum air (see Fig. 1). Thus

and Sp together form a surface on which we have
plenum pressure, Obviously there is no need, nor
any real possibility, to detemmine Sg,,, and hqice
Sp in its subsequent development, wigh any ac-
curacy., We shall interpret this as a licence to
make a choice which renders the analysis simple,

Having so far tacitly assumed that the flow
is steady, we must also consider how the flow
model can be generalized to become applicable to
unstcady flows., Obviously, the free surface Sp
must be allowed to move. The possibility that
pressure waves propagatz inside the plenum cham-
ber must z2lso be considered. Consequently, the
pressure cn Sp,+ Sp cannot be taken to be known
in advance. ‘l‘nese are serious complications
which can perhaps not be handled without making
further simplifications, such as assuning the
unsteadiness to be a small perturbaticn of a
steady flow. -

3. Assumptions and Basic Equations

The test scction wall, before the slots are
introduced, is taken to be a cylinder, S,
The longitudinal slots, mumbered
1 to N, are connected to plcnum chambers with
quicscent air at prescribed pressures p#)(i. =
142,..,N): The x-axis, parallel to S_,points
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in the flow direction, The radius vector r is
orthogonal to the x-axis. The hydraulic radius
of S, 1is employecd as the unit of length,
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Fig. 2. Slotted test section,

The model and its wake are located within
the cylinder S, parallel to S_,. The flow is
taken to be inviscid between S, an I_ Sy as
The
flow of fast air will be described by a small
irrotational perturbation of a uniform reference
flow parallel to the x-axis (at density s
pressure p_, velocity U and Mach number M),
the perturbation to be considered as produced by
the distribution of normal velocity set up by the
model on S;,., This distribution is of course
not known in advance, Our ignorance of the flow
inside is the reason for the wind tunnel
test to begin with, but from the shape of the
model one can often estimate it with suffi-
cient accuracy for computing the wall interfer-
ence. This we assume to be so and choose for
the reference state the free-stream state at
vhich the estimate is made,

. Let V- g(x,r,t) be the perturbation veloc-
ity potential, normalized to be zero in the ref-
erence flow. To first order for transonic flow
it satisfies the following differential equation
between S, and the outer boundary of the fast
air:

Lo = [W-MM’(YH)vx]vxp%vxg :'T:cpu- (1)

Here A is the Laplacian in planes x = constant,
while ¥ is the ratio of specific heats in the
reference state., The inner boundary condition
for @ 4is at a point P

(2)

vhere n denotes differentiation in the normal
direction and F is the normal velocity distri-
bution (which we have assumed known). The outer
boundary condition on solid surfaces adjacent to
fast air is similar:

on S 1 @, = F(p,t) ,

'v . Pl

internally in slots: q = H(P)

on between slots:

(3)

H vanishes wherever the walls of the slots are
parallel. (More generally, we could easily al-
low @, to be non-vanishing on S, as well,
thus accounting for small deviations from cylin-
drical geometry as well as for the displacement
effcct of wall boundary layers,)

.

3

The remaining outer boundary condition in-
volves the pressure. In the present approxima-~
tion the Dermoulli equation is

Pho = = Q P (F 9,49+ 3 Grad®g) , ()

wvhere Grad dcnotes the gradient operator in a
plane x = constunt, The quadratic cross-flow
term is necded only in the slot regions, where
the cross-flow velocity might be considerably
larger than elscwhere. In the case of steady
flow, the jet and free-surface boundary con-
dition thercfore takes the form

S _+58
po * 5p

on s Q‘+%Grad’q=-6u",

p\ - p,
6‘”: -‘p——-—u.— (L = 150..,N) o (5)

L

‘The corresponding condition for unsteady flow

will be discussed later,

In order to formulate an upstream boundary
condition we shall assume that the slots all be-
gin at x = 'x_  and that their widths increase
smoothly from zero. With a stretch of parallel
walls between the contraction and the beginning
of the slots — since F is likely to be small
that far upstrcam — the flow at x = x, ought
to be uniform (except for receding waves in the
unsteady case), We shall in fact take this to
be so and prescribe as an upstream boundary con-
dition for steady flow that ¢ takes a constant
value, g, say, on the plane x = x,. At the same
time we must adjust F to vanish at x,. Note
that the Mach number Mo of the entrance flow
is a controllable test parameter which deter-
mines a particular value fer ¢, . We shall not
specify any downstream boundary condilion, only
assume that the slotted part of the test section
is long enough for the conditions at the down-
stream end not to influence the flow at the
model,

In the present approach the wall interfer-
ence is obtained, obviously, by subtracting from
@ on Sp the corresponding distribution ob-
tained with unbounded flow outside S,, (using
the same reference flow) in precisely the situa-
tion prescribed when estimating F. If we are
to minimize the interfercnce we must explore the
influence on ¢ of the several test parameters
at our disposal. The mixed form of the set of
outer boundary conditions for ¢ constitutes a
major difficulty when performing this task.

4, The Method of Approximation

In order to overcome this obstacle we shall
intreduce an approximation @(x,r,t) for ¢ ,
satisfying the same differential equation amd
the same inner boundary condition, but a new
outer boundary condition. This boundary condi-
tion ought to be as simple as possible from the
point of view of computing §, consistent with the
requirement that @ must be closely cqual to ¢
on Sy (where the interfercnce is to be computed)
Thus, the new boundary condition shall be re-
quired to be homogencous and local in the scense
that it is a regular functional rejationship
between @ and its normal derivative over the
entire boundary S, while values of @ or ¢
inside S, , e.g. on s must not be expliel‘-
ly present. Clcarly the boundary conditions for
@ are not homogeneous in this sense, although
/thoy are local,

L]




. The potentinls § and @ are expected to
be noarly cqual almost everywhere, in particular
in the neighbourhood of S, , and to be essential-
1y different only where slots are located. There
the cross-flow derivatives, but not the poten-
tials themselves or their derivatives with re-
spect to x or t,are cxpected to be much dif-
ferent, Noting that the differential cquation
(1) contains cross-flow derivatives ounly in the
left-hand mcmber, we arrive at our basic method
of approximation: we neglect the difference
botween § and @ in the right-hand member and
postulate that

-é(;'v)-oo (6)

This is of course the slender-body appraximation
applied to the slot flow, Therc is additional
support for its validity in that in transonic
flow, and at low frequencics, all terms in the
right-hand member of (1) are small, But this
also points to the danger that the approximation
(6) may not be very good near shock waves and
high-frequency receding waves, At best the ap-
proximation can be verified a posteriori,

The differential equation (6) can be inte-
grated immcdjately to give
« 9=+0-7 , (7)
vhere ¢(r;x,t) and #(rix,t) are two-dimen-
sional harmonic functions satisfying the same
type of boundary condition as ¢ and §. More
specifically, ¢ is taken to satisfy an inner
condition (2) with the normal derivative pre-
scribed as f(P,t) on S, (f being similar
to,but in general different from F) and in addi-
tion to satisfy the condition (3) for the normal
derivative at the outer boundary as well as the
conditions (5) for the slot pressures (or a cor-
responding set for unsteady flow). In general
this will determine ¢ uniquely in terms of f.
Similarly, § is taken to satisfy the samc inner
boundary condition for the normal derivative as
¢ and a new homogeneous and local outer bound-
ary condition chosen so as to make § uniquely
determined and easy to calculate, rendering it
at the same time closely equal to ¢ on Sm .

If the outer boundary condition for § has
the required property of not containing f ex-
plicitly, then it might be eligible as the con-
dition defin ®. Let us assume this to be so
and solve Eq. (1) for ¢, applying the inner
boundary condition (2) together with the outer
boundary condition thus taken over from o .
This can be done without specifying f. We then
conclude from (7), assuming the basic approxima-
tion (6) to be true, that ¢ is closely equal
to ¢ on S,, as it should be,

The.crucial question is now whether ¢, as
approximated by (7), satisfies the outer boundary
conditions (3) and 15) to sufficient accuracy,
To verify this,choosc f so as to make @, = @
on S,. The equality of § and § on S, (in
virtue of the common boundary condition) is there~
by extended,  approximatcly, to a neighbourhood
of Sy . Therefore, in consequence of (7), it
might be assumed that in a similar neighbourhood
(which is taken to include the slots) o=@ ,
Px “Oxy Pt =0ty Grad ¢ = Grad ¢, and also

« that the frec boundaries Sp coincide. Then

¢ satisfies the boundary conditions (3) and (5),
and the prablem of computing ¢ on Sy, as in-
flucnced by the test section wall, has been re-

duced to the simpler problem of computing & .

Note that in this process it might be un-
necessary to compute ¢,f, or @, since none
of them is present in the boundary condition for
. lowever, if we want to determine conditions
at the wall, for example wall pressures, then we
shall need to know ¢ there,

5. Conformal Mapping and Analytic
Continuation, Smoothing.

In order to arrive at tne outer boundary con-
dition for @ we must analyse ¢ and & . They
are both two-dimcnsional harmonic functions in
regions with shapes independent of x. It is
therefore natural to perform a conformal mapping
of the annular region between S, and in
each plane x = constant, mapping the boundaries
onto concentric circles., In addition to other
simplifications this will permit us to reform-
ulate the inner boundary conditions for ¢ and
$ by analytic continuation to be imposed at the
centire of the circles,

The mapping is scaled to leave the cross-
sectional area of S,, invariant. Let (r,8)
be polar coordinates in the transformed plane.
Hence Sv is mapped onto the unit circle.

Ve now postulate that in analysing &(r,0;x,t)
it is sufficient to include only terms up to and
including the order v in a Fourier expansion
“With respect to 0. This is a decisive step: it
‘specifies a 'filver' which permits us, by choice
of v, to approximate ¢ by @ with controlla~
ble smootimess at the wall and precision at the
model, Then ¢ must have the form

sin jo )r“’ +

v
?= A tn. r+ﬂ°;§‘[_(A JcosJB +By

+ (5Jcosj9+ EJainJG)rJ] i (8)
where the coefficients A _, AJ, Bj, BJ and EJ
are all functions of x and Yt,

The corresponding expression for ¢(r,0;x,t),
having the same singular structure at the origin,
is 4 :

v
~J
® :: A tn “"o}f,[(‘f“” + BJsi.nje)r +
+ (0 §C08J0 + E

sinJG)r‘i] +8 , (9)

J

wvhere the remainder §, containing the harmonic
components required for ilescribing details of
the slot flow, is O(r’*') as r-0, In this
formulation the requircment of common singular
structure correspoinds to the condition that the
¢ and ¢ have thc same normal velocity on Sein
while the requirement that the outer bourdary
condition for @ shall make it closely equal to
¢ on S, now takes the form

ﬂonDog ﬁJ-DJ .

(3= 1,2,00040) &

!J =K, (10)
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Once the outer houndary condition has bheen
established wo can either use it directly to
solve the complicated trinstormed version of the
transonic differentinl equation, or transform it
back to the original pgeometry aud there apply it
to the simpler original cquation. The choice is
one of convenicnce in the nuserical work. In
the following we shall L~ concemed only with
establishing the outer boundary condition in the
eircular geometry,

6. Asywptotic Approximation for Narrow Slots

Tho fact that in practice slots are usually
‘narTow as compared to distances between slots
will be the basis for the continued analysis.
In this situation asymptotic expansion with re-
spect to the slot width as a small paramcter
suggests itself as a useful method to be adopted.
Obviocusly, each slot will need its own 'inner'
expansion, scaled with the slot width, 7The
‘outor' expansion will be concerned with the
overall flow on the scale of the test section
radius,

e
Sp
(4)
Pp 77

Fig. 3. Inner’'and outer flows.

In an inner expansion the slot will be lo-
cated alone in an infinite plane wall (Fig. 3).
In the outer expansion the test section wall
will be solid with sinks or sources located at
the points into which the slots have contracted.
The total flux of each sink or source will of
ca’rse be equal to twice the corresponding flux
q’(1 = 1,2,...,N) through the slot (positive if
into the plenum chamber; flux unit = U times
test section radius)., These fluxes are not known
in advance but depend on the plenum pressures pli)
through the pressure conditions (5) at the b -
aries S and S,. They will therefore have
to be obggincd by matching the outer expansion
to each of the inner expansions. For a survey
of matching problems involving flow through
narrow slots see Ref, 12,

‘Leaving the inner expansions for later, we
shall first obtain an outer representation of ¢,
assuming the fluxes q'i’ to be known. This will
permit us to analyse ¢ and, in fact, to make

a first specification of the boundary condition
for P

An elementary solution with a source at the
origin and a sink of double strength on the unit
circle at 6 = o) (Fi{v. h) is given by (Vo) tnr-
(1/n)tn V) | vhere 1! ’(r,o) is the distance
from the sink:

o -J 1-2r cos(0-6) & 2 , (1)

‘sent the shape of the model,

Fig. b. A source at the origin, a sink of
double strength on the unit circle.

It is easily shown that this solution has zero
normal derivative on the unit circle (for 84 o%),
We can therefore inmediately write down the
outer representation of ¢

i

; q(i))m,._ 'r‘T ;': Pty 6(r,0). (12)
=1 i=1

The undetermined function G is harwmonic in the
unit disk, except at the origin, and has zero

normmal derivative at the outer boundlu;y. Com-
parison with (9) shows that A =L q'i)/2n  and
that 2

T -3
G=D +Z (Ajcosj9+ B.sinj®)(r Y+ r-'). (1)

=1 J

To obtain § we nust expand the rest of ¢.
It is casy to show that

e _E %°osta(e-e“’nrho(r""). ()
J=1

Hence

F=a(d) - tmrep 4
i
+ -'!; fq“){ ij% cos[J(O-O‘n)]r" } +

v
+ £ (AJcosJ0+ B s:LnJO)(r"’ + r") =

J=1 J

- i=1 J=1

This gives inmmcdiately an important part_ot
the attempted outer boundary condition for ¢ @

re1g ;l‘. %‘E;‘qu) {%’_ ﬁlcos[‘j(e_o(“)]} . (16)

This expression for the normal derivative of §
at the outer boundary does not contain explicit-
ly the coefficients Ay and B;, which repre-
s0o it scems to
be local as well as homogencous in the previous-
1y defined sense, One might suspect that the un-
known fluxes q“‘, when resolved, will bring the
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modol back into the picture, but since they are
to be obtained by matching: at the slots we ex-
pect them, of course, to be locally determined
in texms of 3.

In preparation for the matching we deduct
from (15) tho following inner vepresentation of
the outer represcntation of ¢ at the slot
point k 3

(k) N
P=- 3“- in 5% 3(1,&“);:&;() +‘$‘qmllu"d¢0(ljm).
=

(17)
: Herc

v
“u,k)s_;‘; ‘nrﬂ.k’ > X T % cos(J(eud_e(U)]' 12k ,
=1

n
J

v 3
u“‘-“’.-% z-} O e Ngw s ) (18)
J=1
with rﬂ'k) denoting the distance between the
slot points i and k . The dominating part of
the remainder corresponds to a tangential flow
past the slot point.

o 7. Inner Representations and Matching

The inner flows might be analysed either in
the transformed or the original cross~flow plane
silnco the matching will involve only ¢ and the
q' ’, which are all invariant under the conformal
mapping. We choose to work in the original plane
as being clearly the simplest alternative.

As explained in general terms in Section 2,
we shall work with a simplified slot flow model
(Fig. 1) in which fast air from the test section
enters the plenum chamber as a jet while, in re-
verse flow, the fast air in the slot retums to
the test scction without separation, letting in
quiescent air behind it to form a longitudinal
separation bubble at plenum pressure p, k)

Since the boundary S_ between the two masses
of air is not pmcisefy defined in the model, we
can usc this freedom to simplify the computation
of the inner representation. More specifically,
we shall assume, at lcast in the steady case,
that for any given family of similar slot cross-
sections we can restrict ourselves to one basic
cross-flow solution, taking the different posi-
tions of one of its material curves to represent
possible free-boundary curves S, . Then the
slot flow model is essentially complete as soon
a8 we prescribe the curve S at which the
pressure condition is to be sag(ia!‘ied when there
is a jet into the plenum chamber and at which the
Jot is to be taken to split when the flow revers-
es. Introducing Cartesian coordinates (z,y)
(Fig. 5), we take as the parameter for any curve
8§, its intersection y_ with the y-axisg
tﬁe maximum valuc of yJ; » corTresponds to S

ypol
Po .

Now let a(x) be a measure of the width of
the slot. The velocity level in the slot aud its
neighbourhood is given by ¢X!/a ., with this
should be comparcd the velocity set up by a
streamwiso variation of the slot width, as ex-
pressed by the normal velocity H in (3). As
this is proportional to da/dx, it is evidently
two orders of mognitude smaller in the limit

Fig. 5. Slot geometry.

a =0 a we can therefore safely neglect it
vhen computing the cross -flow. In addition to a
sink-like flow into the slot, the gcomet:ry allows
a flow esscntially parallel to the wall., Its
velocity is determined by the outer flow and is
consequently 0(q'k)), We can neglect this flow
component, too, when writing down the inner re-
presentation of ¢ to the lowest order; it
should be included in the next order approxima-
tion, however,

We first solve the sink-flow problem with
a=1, ¢dK = 1 and with vanishing potential at
y =2z =0, (How this can be done is demonstrat-
ed in Appendix 2 for the particular geometry of
Fig. 5.) Let this normalized potential be
Q(z,y). Then our inner representation is

6 = % d™.q(z/a, y/a) , (19)

wher. A (x,t) is the value of ¢ for slot k
at y=2z =0 (if necessary extrapoluted from
sp by Q) .

Far away into the test section Q has the
representation

Qz,y) = -2 tn :"‘)+n+o(-r;—k,) :

where

naxllktn”(Q+%mr

The corresponding representation of ¢ is

il (20)

(k)
0 = o™ L ta(r™/a) + MR + 0(:?7‘,)

and this can be matched to the outer représenta-
tion (17). Hence .

N
@‘k)g 701 ,Olk) ix,t)+ I q(ﬂ H(’-ok) =
i=1

- H(;:— tn a+R) . (21)

This important result permits us to relate ¢
locally to the plemum pressures,

8. The Plenum Pressure Condition in Steady Flow

So far the analysis applies in its main fea-
tures to unsteady as well as steady flow., We
now restrict oursclves to the steady case (to
retum later for a brief discussion of the un-

”
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'lteady casc). We can then apply the pressure
condition (5), which gives at 2 =0, y = yp or
Ypo

wvhere v, (y./a) is the valuc of the y-deriva-
tive of \lleplwnnalizod potential Q at z = 0 on
S, It is sufficient to satisfy the condition
u! 2 = 0 if the variation of flow velocity on
the boundary curve is small, as we shall assume
in concordance with our simplified description
of S . In order to keep track of yp(x) when
.4t is smaller than Ypo one has to solve the
differential equation

d (k)
2= v/ (23)

marching downstream from x = Xo 9 Where y, =0,
and taking a new initial value Ypo each time
the jet splits on flow reversal,

Inserting ¢ from (19) into (22), with ¢“"
from (21), we obtain the pressure condition in
the form

N
%x- {a( 1 ,Ork) 3x) +1§'qmll("k, +
qb‘)[_Q(O v/a)- R - -,'; tn a}} +

+ -;',—(qmv)/a)' ar 9 (k=1,...,N) . (=2u)

If all the fluxes qm (x) are known thig is an
ordinary differential equation for @(1,8" ;x)
which can be integrated together with (23),

starting with a known value for ¢ at the be-

€inning of the slot.

9. On Outer Boundary Conditions for
Transonic Flows

At this stage, before we attempt to construct
an outer boundary condition from the raw material
eathered in the preceding sections, it might be
uscful to consider what sort of a boundary con-
dition we should like to have.

Ve are now concerncd with steady flows only,
80 the differential equation with which to use
the boundary condition is

. bp =R —lcn’(wl)axlixx . (25)

Typically, with those unbounded transonic flows
for which the small-perturbation analysis is
valid, the right-hand member is small compared
to the cross-flow derivatives constituting the
left-hand member, We expect this to be truc
also in the present case, at least to the extent
that we have been successful in designing a slot-
ted test scction with small interference., This
means of course that the cross flow in any plane
x = constant is approximately volume conserving
80 that as much volume flux as entering at the
inner boundary, there determined by the shape of
the modol, must leave through the outer boundary
at about the same cross scction. This costitutes a

7
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strong rcatrigtion on at the outer bLoundary
in terms of ¢, at the inner bowdary, swirest-
ing that we might run into difficulties if we
try to prescribe the normmal derivative at the
outer boundary,

These considerations come sharply into focus
in the case of axisymmetric flow in the slender-
body approximation, that is with the right-hand
member of (25) ncglected. Then the perturbation
potential @(x,r) takes the form

l"i-'r = s'(x), 9 =s8'(x)" ln!‘*s(xn‘) ’

where s(x) is essentially the cross-sectional
.arca of the body, 1In this case the radial vel-
ocity is everywhere exactly determined by the
inner boundary condition, at the body, and only
the potential itself can be prescribed at an
outer boundary (at r= 1, say). Therefore we ob-
tain a reasonable slender-body solution if the
outer houndary is a jet boundary at prescribed
pressure, or a ventilated wall which responds to
the radial velocity s'(x) with a well-defined
pressure disiribution, On the other hand, with
a solid wall, at which zero normal derivative
must be prescribed, there is no solution at all,
Then the right-band member must be retained in
(25), accounting for the raised blockage inter-
ference level typical of choking.

We shall therefore attempt to obtain our
outer boundary condition in the form
= 7)., (26)

on Sw:

wvhere £ [ ] is a regular functional over S,
(it becomes singular in the limit of a solid
wall, of courseg‘.l This choice carries with it
the suggestion that in solving (25) by an itera-
tive numerical method one should march back and
forth between (he model and the outer boundary,
arriving each time at tiie outer boundary with an
improved nommal velocity to give, by (26), an im-
proved pressure distribution to be carried back
to the model. 1t is reassuring to be able to
note that employing such a scheme specds up con-
vergence, in particular in subsonic regions,?
Our philosophy also suggests that the finite-
difference approximation for the left-hand membLer
of (25) should be a conservative one.

The choice of (26) should not, however, pre-
clude interest in the inverse functional, 37! ,
giving @, in terms of @. Actually, if we are
tos adopt the idca of a 'self-correcting' test
section, presently being pursued in scveral lab-
oratories, then a viable scheme might be to mcas-
ure the wall pressure distribution along slats,
essentially ¢, and hence compute the normal vel-
ocity '@n rather than trying to measure it. For
this "1 would be needed (together with a pro-
cedure for obtaining § from @ § sce Scc-
tion 12), One would next have to compute the
unbounded {low outside S, using in an
inner boundary condition and obtaining an esti-
mate of what § should be on S, in order to
be free of interfercnce, Using again the same
Ty » one would then adjust the test parameters
so as to ¢ $, computed by (26) with the ad-
Justed sy cqual to § obtained from the outer
flow, Repeating this cycle as long as the re-

L




quired wall adjustments can be realized, employ-
ing altemately b oand ,» one should end up
; with a slotted wall of minimum interference,
' Running the cycle backwards, adjusting 6'1" for
equality rather than & , would seem to be in-
viting difficulties,

10. t:c.matx'ucun(:~ the Outer Doundary Condition

According to the prescription of Section U4
for the boundary comdition on Sy, § is to be
related to @, in the same way as & is re-
lated to §,. To the extent that we have estab-
lished this relationship it is contained in Equa-
tions (16), (23) and (24).

We take (16) as a starting point since it
contains the nommal derivative, the argument
function of Z ., Substituting @(x,r,8) for
#(r,9;x) and specializing 8 to the slot posi-
tions, we obtain

N W
b {?:,w z cos[J(eu‘z- ot )]} qm
i=1 J=1

= “'3,.(*.'.9(,"‘) (k=1,2,...,N) . (27)

This a lincar system which determines, for each
x, the slot fluxes in teims of $r « The coef-
ficient matrix is independent of x and can be
inverted numerically and stored as soon as the
slot locations have been decided. Thus it is
very simple to calculate the slot fluxes from P e

Next we intcgrate the equations (23) to de-
termine the flow penctration depth in the slots.
This is straightforward, taking one slot at a
time. Now the slot gecometry is involved, how-
ever, so the integration must be repeated cach
time we make a wall adjustment,

From (24), finally, we obtain the value of
the potential at the slot positions,

¥ 1,09) = ¢, - (00,5 /a)-r -1 1n a2q™ -
X

N 4,K)( 2
-’:'H( )q i) _xj [—%(qu'/n) 7 b(k)-]l &

o(k' ‘l""N)' (28)

satisfying at x = Xo the upstream condition
for § assumed in Section 3. The right-hand
member is now completely known. It would r1e-
main valid if we were to allow the plenum pres-
sures to vary with x,

It is primarily Equation (28) we must ana-
lyse when we want to adjust slot flow paramcters
80 as to produce the wall pressure distribution
corresponding to interference-free flow. There
will always be interfercnce around the entrance
soction at x=x,, The test parameters, inclu-
¢ ding the direction of the unbounded flow we are
trying to simulate, should be selected in such
& way as to make this interference small and
local. Also, note the sinjular behaviour of §

l& X, Whore not only a vanishes but also
q' ) (since Grad ® = 0 over the whole planc

. X®%X)e One camot expect
’ » >

(1), ®
=

k '
;“(lo, 1 ,9( ,):-[,—l (Vp::l: + s(k,}
o -

to be well-determined since llm(q(k,/n) will
never be known with any precision, 7This gives
us, perhaps, the opportunity to specify
1im(qkl/a), which is also necded in Eq. (23),

in such a way that @, takes the value corre-
sponding to the chosen entrance Mach number My,
thus avoiding a spurious velocity jump at x=x .,
In practice the achievement of a smooth entrance
flow might require a proper chioice of plenum
pressures.

In order to complete the construction of the
functional wc have only to define @ between
slots. In accordance with our method of analysis
this is done, in each plane x = constant, by tri- \
gonometric interpolation of order vu. Obviously
v must be chosen so as to make 2u+ 1 cqual to .
N at most ; wusually it will be smaller. This AR
means that usually we cannot satisfy the condi-
tions (28) precisely. A least-squares fit could
then be used, which again calls for storing a
pre-computed constant matrix. The deviations, of
course, correspond to higher order components to
be filtered out. Since both (23) and (28) are
non-linear with respect to q(" such componcnts
will arise even if not present in the §,. wused
in (27).

The inversc functional is not so easily con-
structed, due to the non-linearity of the equa-
tions from which are determined the fluxes q(l’
carresponding to a given potential on S, . An
iterative scheme must be set up. Once the
fluxes are known, the normal derjivative is im-
mediately obtained from (27) at the slot posi-
tions. The construction is again completed by
trigonometric interpolation,

11, Symmetric Flow

As a simple application consider the case of
an axisymmetric body along the axis of a circular
test section with N uniformly distributed iden-
tical slots (N > 1). From symmetry, the flow is
periodic with respect to ® with period 2u/N .,
The potential ¢ will therefore be independent
of © to order N-1 in a trigonometric expan-
sion., Since N-1 is larger than (N-1)/2, the
upper bound for v, we conclude that § is
independent of 6. Actually, since the flux
through each slot is given by

q=d $r(x,|), d=--?—;l (= arc length between slo?s)

(29)
and is independent of v, we will get the same
$(x,r) for all permitted values of v.

Equation (29) takes the place of (27). It
remains to consider (23) and (28). Noting that
in the present case
N '
o,
i=1
‘we obtain
dy
d -
T = Yp a (), (30)




and x A
#xi1) = gy ke (x,)- (30, 23,0 ¢ 8)ax, 1)
x

with @

K=l m 2 L pb-Re Q(0,y,/a)) . (32)

Ejaation (31) agrees with the classical for-
mula, aypnmented by a quadratic cross-flow term
in the manner of W.W. Woold'*, 1t is shown in
Appendix 2 that Equation (32) is a second order
approximation for small a/d to the classical

same time that the free surface Sp might move
and that the plenum pressures 6'V are no loner
known in advance since pressure waves may propa-
Fate into the plemuwn chiumber, The simplilied
picture of the slot flow introduced in Scection 7
should be extended to include a potential which
describes the cross flow due to the motion of
Sp, in addition to the potential Q which de-
scribes the cross flow duc to the obliquencss of
the flow. (This approach means, of course, that
we are assuming the slot width to be small com-
pared to typical wave lengths of the unsteady
flow.) The additional cross flow is somewhat

different in that it involves the quiescent air i

] o 4
SN VoLl as the genareiiznd K. of the plenun chamber as well as the fast air in

It may scem remarkable that @ is independ- :hc slot: Thi's will nls;o add a "f':f" contribution Sl v {
ent of 0, It does not mean, however, that the - 0 the v ghi-haod mr-mbo‘t of-‘ Eq. (23) for Sp ’ et B
wall interference is tot:nlly'indo moml('-nt of the e left-loll mester of Which, of course, sew o A
brecion g el Sima P b i f" 4R X becomes  [3/3x + (1/U)3/3tly, . All these eoffects | .
x He DRsTonL Soast e ¥ - n combine to make the pressure condition correspond- {

adding slots we suppress successively higher
harmmonics which were neglected in @ (but pres-
ent in ¢ ) when the slots were fewer,

ing to (24) rather complicated in its final form.

In order to account for fluctuations in 6”‘,
we must analyse the wave propagation in the plen-
um chamber, a forbidding task. The simplcst case
arises if the plenum chamber is so large that only

The outer boundary condition @ = F [§.] as
constituted by Equations (30), (31) and (32) has
been tested quite extensively ® with the numeri~

cal method of Ref. 13 No difficulties were waves propagating from the slots into the plenum L,
» i P % : chamber contribute to the pressure fluctuation b

found except where the slot width was very small, = S e S =

smaller than normally used, in which case the Il 2pg -t . LSO NaYEs Corvespon il T -~

ditional, non-steady part of the slot flow and

so can be analysed, assuming a known steady pres-
sure deeper inside the plenum chamber. In the
next more complicated case one would have to
account for varying plenum pressure in the mainar
of the classical llelmholtz resonance analysis,

It scems that in these two cases there is a rea-
sonable chance to be able to complete the ana-
lysis and construct a homogeneous boundary con-
dition for the test section flow., It will per-
haps be nccessary to linearize the problem,
assuming the unsteadiness to be a small perturba-
tion of a steady flow.

tonvergence became slow., This is of course not
surprising since % is singular in the limit of
a solid wall.

12, Analysis oi’ Wall Pressurcs

For a further application, assume that we
want to determine @ on S, by measuring the
pressure distribution along slats, at constant
6 =04+ oll) say. We first integrate (4) along
the slat to get ¢ (the quadratic cross-flow
term can be neglected in this case). Then from
Equations (7) and (15) we have
W, Wall Interfercnce Correctjons.

P=9+90 -9 Test Scction Calibration. 3
. 1 N (1) () v o, K) Suppose we have succeeded in adjusting the
=@+ Lq {Ln S > 3cos[_j(0w—6( )]} (33) test parameters so as to make the interference
i=1 J=1 negligible at the modcl. Then three wall corrcc-

tions of classical type are immediately available
from this prccess: a Mach number correction

(= M=-M,), an angle-of-attack correction (= the
angle of attack of the test section with respect
to the direction of the unbounded flow sinulated),
and an angle-of-yaw correction (= the correspond-
ing angle of yaw of the test section).

where rvu) is the cross-flow distance from a
pressure tap to the slot point i. In the case
of symetric flow with 6, half way between
slots this reduces to the result obtained in
Ref. 4,

The application of (33) is straightforward
if we know the fluxes, but we don't in the inter-
esting case when we want to determine q(‘) and
@ by applying 7' to § . However, & - ¢
has the character of a small correction, so
there is little doubt that an iterative scheme,
using successively improved estimates for q L ¥ the former corrections are not associated with
will converge rapidly. This is not really very any such distortion mand should be pemitted to
much of a complication. F-! has to be computed be large i€ it helps in reducing the interfer-
iteratively anyway. ence, This is "the principle of minimizing
interference rather than corrcctions“‘s. implying
the concept of a "correctable-interference trans-
sonic wind tunncl"'€,

« The other classical corrections, those for
induced buoyancy and flow curvature, are rightly
abscnt. As soon as they are nceded there is a
distortion of the pressure distribution over the
model that cannot be tolerated. Tn contrast,

. *13. Unstcady Flows

In the first scven scctions the analysis
applies in-jts main features also lo unsteady
flows, In the pressurc condition (5), however,
we must add @t/u to @, recognizing at the

There might be
test scction flow,
for when computing the wall interference.
turbances from the

other errors prescent in the
crrors which are not accounted
Dis-
entrance section upstream of

P
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the slots, axial gradients sct up by the wall
boundary layers or by improper alignment of the
walls, or upstream influcnce from the sting
arrangement arve examples. The main tool for
handling such ecrrors is "calibration", running
the test section empty with the walls avl plenum
pressures sct for uniform flow. Such errors
should be climinated by proper adjustment of the
test section, not by introducing corrections to
the test data. The practice of using the Mach
number of the empty test section, calibrated
against the plenum pressure, as a free-stream
refercence Mach number for model tests does not
seem to make sense in the context of the present

theory.

15. Concluding Rcmarks

The present inviscid theory of wall inter-
ference in slotted test sections generalizes to
three-dimensions the theory for two-dimensional
tests developed on a classical basis®’ in
Ref., 4, 1In analysing the local flow at cach
slot separately, the structure of the theory is
such as to facilitate later inclusion of correc-
tions to account for viscous effects inside the
slots and the plenum chamber. A first attempt
in this direction has alrcady becn made® and
§s more extensive comparisons with experiment
are completed it might become possible to extend
and delincate the area where the inviscid theory,
with or without corrections, might be used with
confidence. 7The interaction of shock waves with
the slot flow must be studied, in particular.

Meanwhile the inviscid theory can be used
for running nunerical experiments, These will
show how accurately one must describe the action
of the slotted wall in different types of appli-
cation, and what wall adjustment facilities one
must provide in order to eliminate the wall in-
terference. They will also help developing
strategies for efficient use of adjustable slot-
ted walls in future wind tunnels,
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Appendix 1 — Symbols

Slot widthj Fig. 5

Coefficient in slotted-wall boundary
condition; Eqs. (32), (A-8) and (A-12)

Mach number of reference flow 1

Entrance Mach number; Fig. 2

Number of slots

Pressure

Pressure in plenum chamber 1 j
. Pressurc of flow at Mach number M 1




Q(z,y) Normalized slot flow potentialj Eq. (19)

qfi)(x,t) Flux through slot 1 ; Eq. (12)
R Eq. (20)
r Radius vector in cross-flow plane
r,0 Polar coordinates in cross-flow plane
1) Distance from slot point i ; Fig. U,
Eq. (1)
,.(i.lt) Distance between slot points i and k3
Eq. (18)
Sn Cylindrical surface enclosing the model
y and its wake; Fig, 2
S Free swrface between fast air and
P quiescent plenum airg Fig. 1
S Surface at plenum pressure across jet
Ly on plenum side of slot; Fig, 1
Sv Outer boundary of test section; Fig. 2
t Time
U Flow velocity at Mach number M
vplvp) =Ry at y= Ype % = 0; Eq. (23)
x Distance along tunnel axis; Fig. 2
X, Location of entrance section; Fig, 2
y',z Cartesian coordinates at slot; Fig. 5
yp Cooxrdinate of S on slot centre line;
Fig. 5 P
Y. Coordinate of S on slot centre line;
Be Fig. 5 pe
Y Ratio of specific heats
o) Non dimensional plenun pressure dif-
ference; Eq. (5)
99 Perturbation velocity potentials;
Egqs. (1) and (6)
.0 Harmonic functions in cross-flow plane;

Eq. (7)

v Highest order considered in harmonic
: analysis of interference; Eq.
Qe Density of flow at Mach number M

Appendix 2
Simplified Analysis of Slot Flow

As a basis for analysing the slot flow for
the geometry of Fig. 5, consider the symmetrical
flow of unit flux from a half planc into a slot
of unit width and unlimited depth (sec sketch).

by
Z=2+iy
7
, ' i { 7
L P V00007 2 -
=12/ of \y2

4

We shall determinoe the velocity potential Q(y,z),
normalized to vanish at the origin.

This is accomplished by mapping the flow
region confonnilly onto a half plane (-n < 9 5 0
in sketch), transforming the slot extremity

LLE UL
1
o

So

[esel?

(z = ior) into the origin and leaving the far
field undisturbed, The required complex trans—
fornation is

Z=2z+ iy
e S e R 2 2 -31_5. —i.i,
g eiofs'-o'e'zi'y—io ‘n\/s—o e — t+ice :
L emE, (a-1)
where (s,l’) are polar coordinates in the trans-

formed plane (. The exterior wall and the slot
walls are mapped cnto the real axis with the
corner points at *o=2% 1/n. The origin goes
into a point on the negative imaginary axis, at

distance 8o from the origin, say. The fiow is
that of a sink at the origin, hcnce
Qa-1 ;s (A-2)
L o " -

This gives, according to Eq. (20), R = (1/n)tn Sy e

As the material curve to represent, in its
different positions, possible free-boundary curves ¢
Spy we choose one which far into the slot is a
straight linc across the slot, In the trans-
formed plane the curve, when close to the origin,
is a circle, In order to determinc its develop-
ment we can integrate along streamlines (rays) in
the transformed plane. Points on the same curve
must have the same value of the parameter

t(s0) = [ 1215 as ,
€

(A-3)

where ¢ is a small positive number. After the
curves have been detennined in the C-plane they
have to be transformed back into the Z-plane.
This has not been carried out yet.

For our immediatce purpose it is sufficient
to consider the intersection y, of Sp with
the axis of symmetry. This point is mapped on

the negative imaginary axis, at the distance Sp
from the origin, say. The value of Sp is ob-
taincd from the equation
ity ,a ®40"-0
Jsp’ +0%4 0 tn —PT— ¥y (A-4)

which gives, in particular, s
Yp = 0., Once = b
forward to compqu Q

= 8, = (0,2110 for
is known, it is straight-
amnd vp ¢




Q(0,y )r=ed tn Bl
Yp -Rk-;h\up,v’--; av, ~ o (A=5)

Ir Yp 1s well inside the slot we can toke
8,./0 to be small, Expinstling the square root in

( -h), the following sccond order approximation
is obtained:

2 ~2(ny_+1)
-ln-p-l-]niony +e P

= . (A-6)
Hence

Q(O.yp) R = IJI' (‘ i 5)"""% .-2(")'9“)'
) =12t (A-7)

Inserting into Eq. (32), we obtain

-2(ny /fa+1)
1, 24 1 8 1 Y
""'[: tnfata (1~ tnQ)e y/asge 4 ]

(A-8)

in complete agreement (to second order in a/d)
with the result of Ref.lU, at least for yp/a >0.1.
.

This result is valid if S_ is inside the
slot. Jf the flow is leaving tﬁc slot as a jet
into the plenum chamber the nnalysis in Ref. I
shows that Eq. (A-8) is still valid if y,/a is
changed into f/a + 0.22, where L is the depth
of the slot. In the present terminology this
means simply that we shall take

Tpo
a

P he

o . (A-9)

When there is a 'Lubble’, for y < 0,Eq,
(A-1) can again be solved upproxhntcry. The
result, for s, >> o0, 1is

te )

USRS A (lo;?.—y;/ - (a-~10)
hence
A < e 13
Q(O.Yp)°R= s l-n)'p- an’ yp, ’

11 1
vp-;-;';(l-;f;-y—;) . (a-n)

P

This is consistent with § becoming approxi-~
mately a semicircle with gentrc at the origin
as soon as |y,| >a. The corresponding result
for K is

K=d[%hﬁh-;f;;ja?-} . (A-—-IZ)

Finally, it might be noted that the preced-
ing analysis, with very minor modifications,
applics nlso to a slot located in a right-angled
corner, One has only to make the axis of sym-
metry into a wais and everything elsc follows,

.
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